Hydroxylapatite
치아 98X 이상을 구성하는 성분이 바로 HA입니다. 이 HA가 산에의해 부식이 되는 것을 우식(충치)라고 부릅니다. 칫솔질은 바로 이 산의 원인이 되는 구강내 물질이나 산을 제거하는 일 입니다. 불소는 산을 억제하는 역할을 하는 것이구요.
Hydroxylapatite, also called hydroxyapatite (HA), is a naturally occurring mineral form of calcium apatite with the formula Ca5(PO4)3(OH), but is usually written Ca10(PO4)6(OH)2 to denote that the crystal unit cell comprises two entities. Hydroxylapatite is the hydroxyl endmember of the complex apatite group. The OH− ion can be replaced by fluoride, chloride or carbonate, producing fluorapatite or chlorapatite. It crystallizes in the hexagonal crystal system. Pure hydroxylapatite powder is white. Naturally occurring apatites can, however, also have brown, yellow, or green colorations, comparable to the discolorations of dental fluorosis.
Up to 50% by volume and 70% by weight of human bone is a modified form of hydroxylapatite (known as bone mineral).[4] Carbonated calcium-deficient hydroxylapatite is the main mineral of which dental enamel and dentin are composed. Hydroxylapatite crystals are also found in the small calcifications (within the pineal gland and other structures) known as corpora arenacea or 'brain sand'
Calcium deficient hydroxyapatite[edit]
Calcium deficient (non-stochiometric) hydroxyapatite, Ca10-x(PO4)6-x(HPO4)x(OH)2-x (where x is between 0 and 1) has a Ca/P ratio between 1.67 and 1.5. The Ca/P ratio is often used in the discussion of calcium phosphate phases.[8] Stoichiometric apatite Ca10(PO4)6(OH)2 has a Ca/P ratio of 10:6 normally expressed as 1.67. The non-stoichiometric phases have the hydroxyapatite structure with cation vacancies (Ca2+) and anion (OH–) vacancies. The sites occupied solely by phosphate anions in stochiometric hydroxyapatite, are occupied by phosphate or hydrogen phosphate, HPO42–, anions.[8] Preparation of these calcium deficient phases can be prepared by precipitation from a mixture of calcium nitrate and diammonium phosphate with the desired Ca/P ratio, for example to make a sample with a Ca/P ratio of 1.6:[9]
- 9.6 Ca(NO3)2 + 6 (NH4)2HPO4 → Ca9.6(PO4)5.6(HPO4)0.4(OH)1.6
Sintering these non-stoichiometric phases forms a solid phase which is an intimate mixture of tricalcium phosphate and hydroxyapatite, termed biphasic calcium phosphate:[10]
- Ca10-x(PO4)6-x(HPO4)x(OH)2-x → (1-x) Ca10(PO4)6(OH)2 + 3x Ca3(PO4)2
Medical uses[edit]
Many modern implants, e.g. hip replacements, dental implants and bone conduction implants, are coated with hydroxylapatite. It has been suggested that this may promote[11] osseointegration.[citation needed] Porous hydroxylapatite implants are used for local drug delivery in bone.[12][13] It is also being used to repair early lesions in tooth enamel.[14]
In spite of attractive biological properties, hydroxylapatite, and materials based thereon, have some drawbacks, such as low bioresorption rate in vivo, poor stimulating effect on the growth of new bone tissues, low crack resistance and small fatigue durability in the physiological environment. The application of modified hydroxylapatite opens up the opportunities for the preparation of artificial bone substances for implants and a large variety of drugs for curing different lesions of bone, soft and mucous tissues of the individual. A promising method of modification is the introduction of fluorine or silicon into the primary structure with the formation of fluorine- or silicon-substituted hydroxylapatite.[15] The introduction of fluorine increases the resistance to biodegradation[16] and improves the adsorption of proteins and adhesion of the coating to the metal substrate.[17]
'충치예방(치아재광화)' 카테고리의 다른 글
충치예방을위한 치아의 재광화 이해~ (0) | 2016.07.01 |
---|---|
충치예방, 치아재광화와 나노 하이드록시아파타이트 (0) | 2016.07.01 |
충치억제, 치아재광화 촉진하는 불소란? (0) | 2016.07.01 |
치약: 연마제, 항균제, 계면활성제, 불소의 위해성은? (0) | 2016.06.30 |
충치의 진행단계 이해하기 (0) | 2016.06.30 |